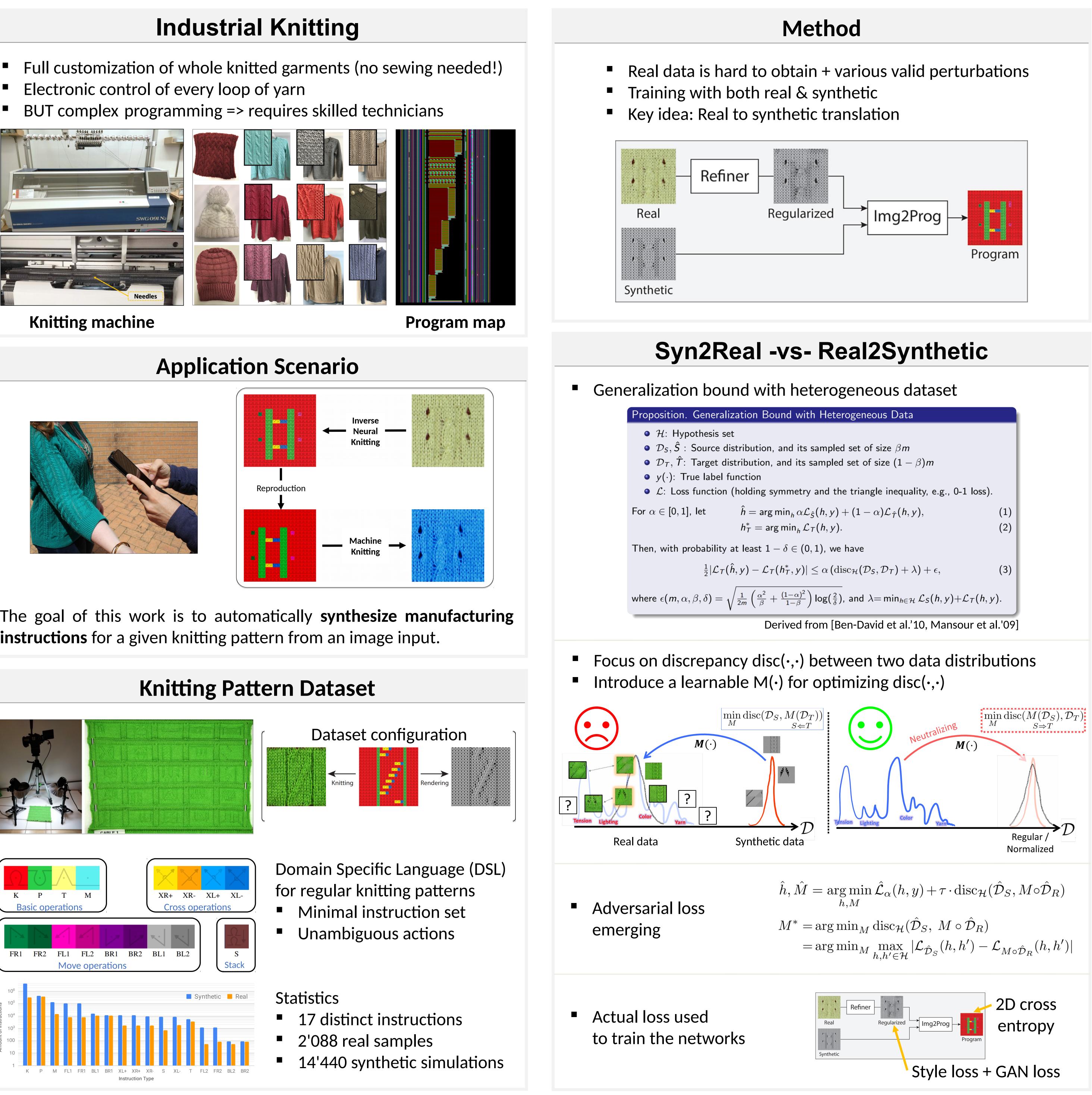
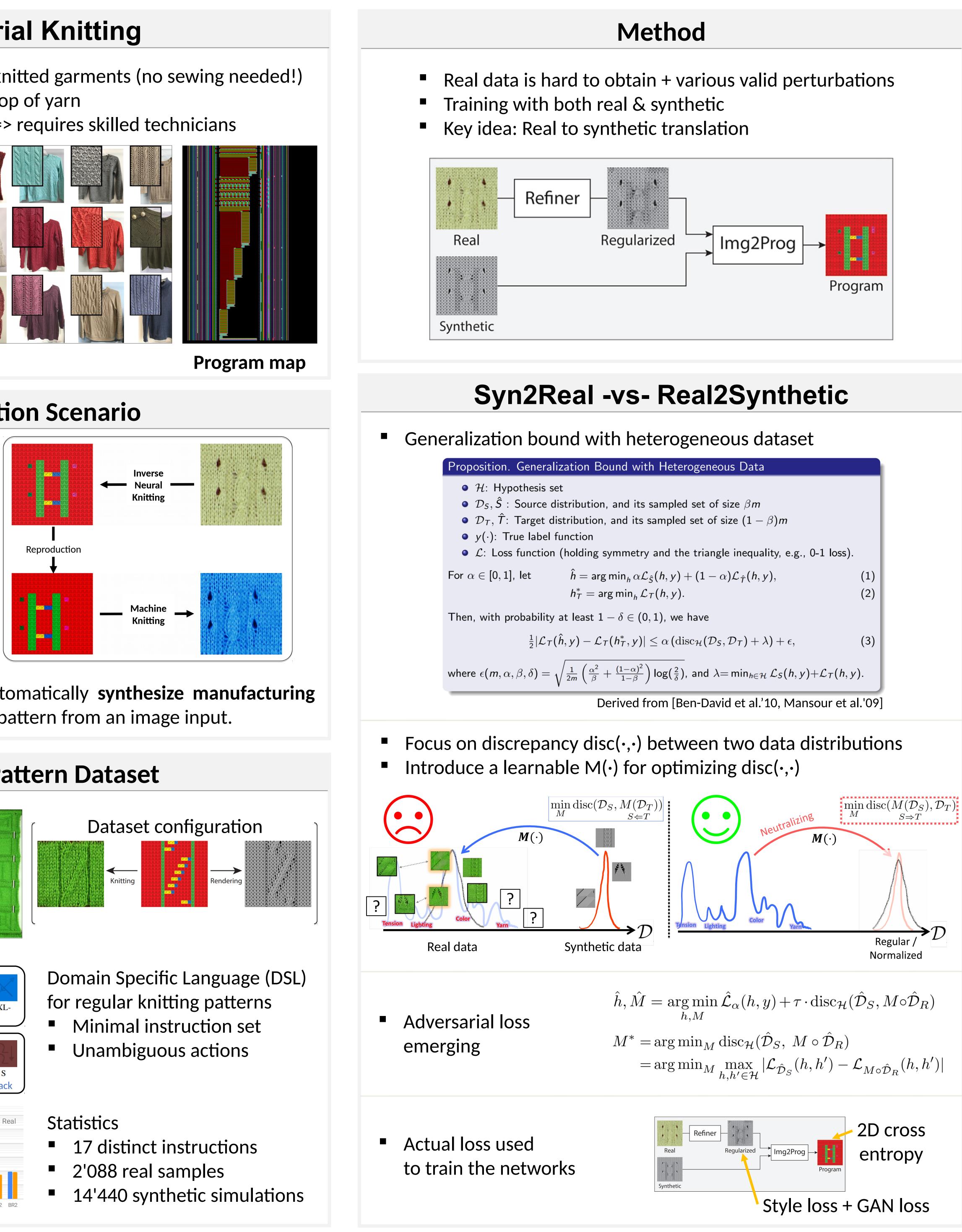
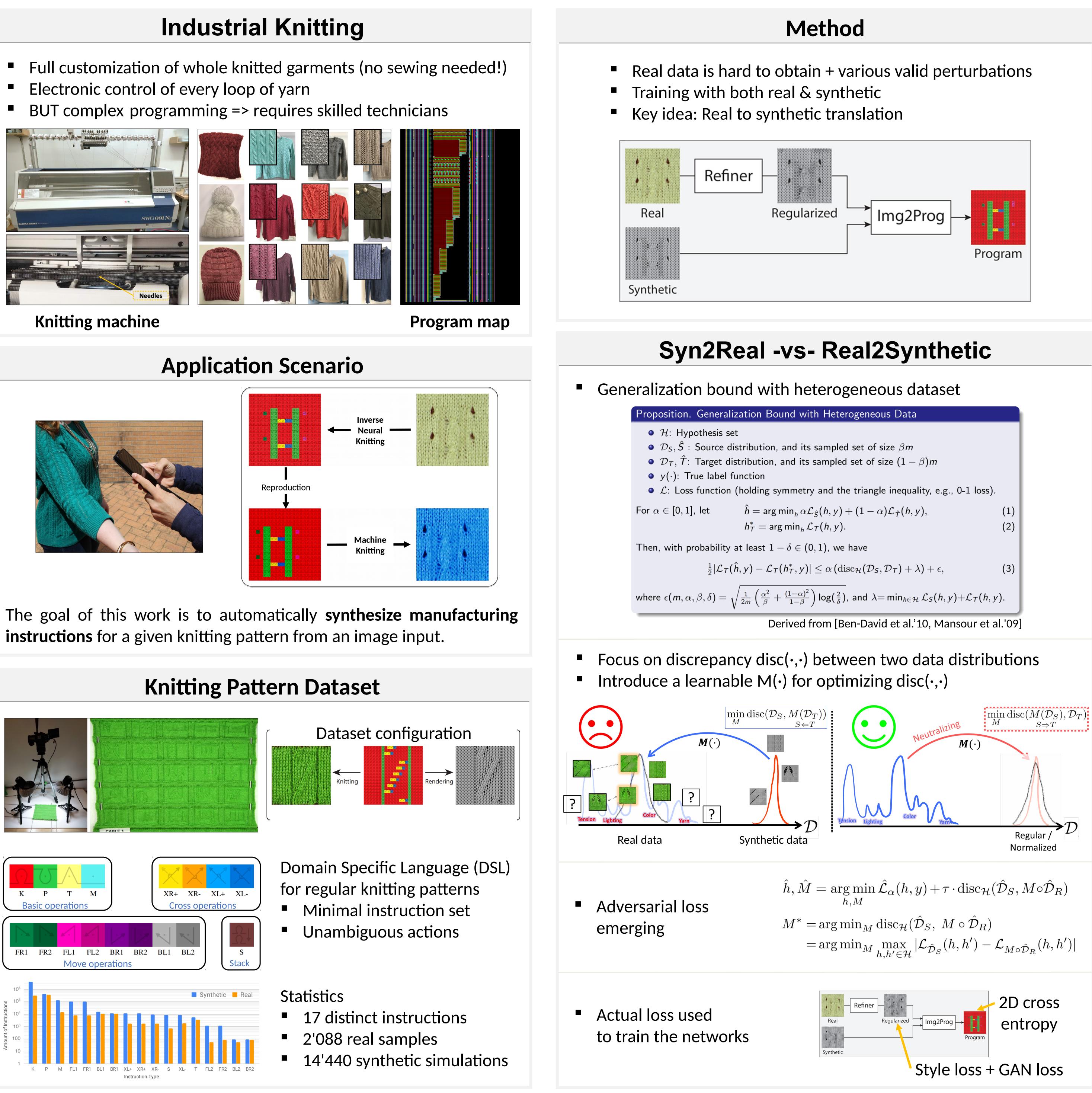


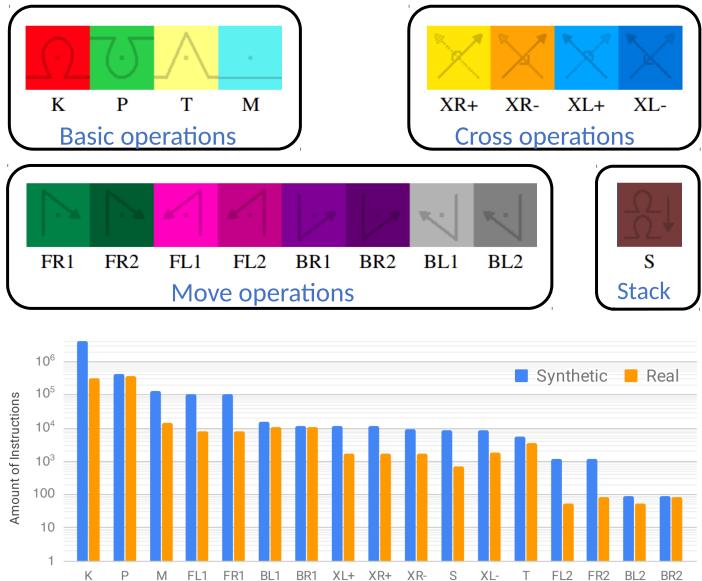
Alexandre Kaspar^{*}, Tae-Hyun Oh^{*}, Liane Makatura, Petr Kellnhofer and Wojciech Matusik

Massachusetts Institute of Technology (MIT), Computer Science and Artificial Intelligence Laboratory (CSAIL)









Neural Inverse Knitting: From Images to Manufacturing Instructions

geneous Data							
et of size βm							
et of size $(1-eta)m$							
riangle inequality, e.g., 0-1 loss).							
$(1-\alpha)\mathcal{L}_{\hat{T}}(h,y),$	(1)						
	(2)						
ve							
ve							
$\mathcal{L}(\mathcal{D}_{\mathcal{S}},\mathcal{D}_{\mathcal{T}})+\lambda)+\epsilon,$	(3)						
nd $\lambda = \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{S}}(h, y) + \mathcal{L}_{\mathcal{T}}(h, y)$	·).						
-David et al.'10, Mansour et al.'09]							

Quantitative comparison

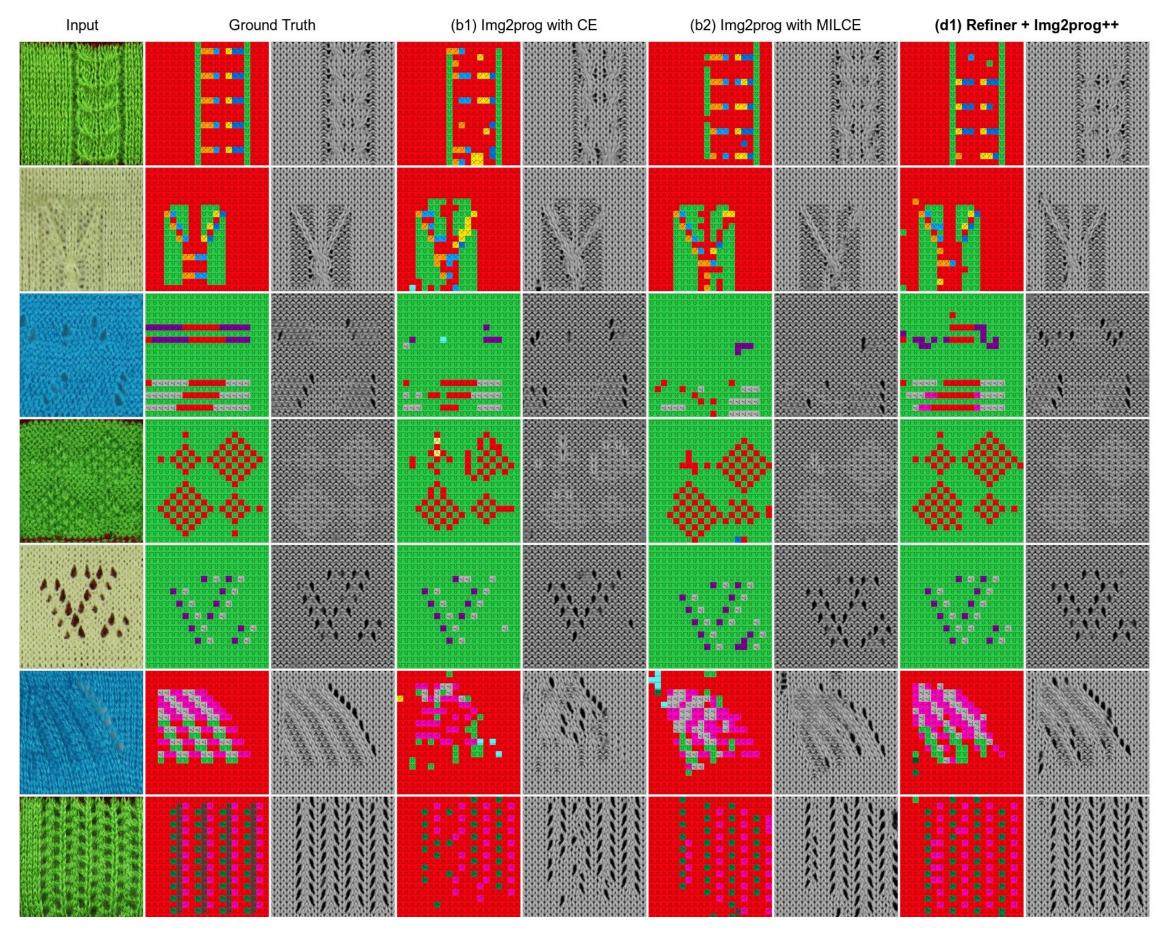
	Method	Accura	ncy (%)	Perceptual			
	WICHIOU	Full	FG	SSIM	PSNR [dB]		
(a1)	CycleGAN (Zhu et al., 2017)	46.21	21.58	0.631	15.43		
(a2)	Pix2Pix (Isola et al., 2017)	57.11	46.06	0.662	15.94		
(a3)	UNet (Ronneberger et al., 2015)	89.46	63.79	0.848	21.79		
(a4)	Scene Parsing (Zhou et al., 2018)	87.53	66.38	0.850	21.79		
(a5)	S+U (Shrivastava et al., 2017)	91.85	71.47	0.872	21.93		
(b1)	Img2prog (real only) with CE	91.45	70.73	0.866	21.52		
(b2)	Img2prog (real only) with MILCE	91.94	71.61	0.875	21.68		
(c1)	Refiner + img2prog ($\alpha = 0.1$)	93.62	78.06	0.896	22.90		
(c2)	Refiner + img2prog ($\alpha = 0.5$)	93.48	78.47	0.893	23.18		
(c3)	Refiner + img2prog ($\alpha = 2/3$)	94.11	81.08	0.902	23.68		
(c4)	Refiner + img2prog ($\alpha = 0.9$)	91.87	71.44	0.873	21.96		
(d1)	Refiner + img2prog++ ($\alpha = 2/3$)	94.35	81.96	0.905	24.06		

Accuracy breakdown per instruction

		-				-											
Instruction	Κ	Р	Т	Μ	FR1	FR2	FL1	FL2	BR1	BR2	BL1	BL2	XR+	XR-	XL+	XL-	S
Accuracy [%]	96.49	96.58	74.84	71.69	80.22	83.33	76.01	100	71.42	27.27	70.88	27.27	55.21	62.32	62.61	59.28	25.87
Frequency [%]	46.42	45.34	0.50	1.99	1.10	0.01	1.13	0.01	1.08	0.01	1.23	0.01	0.28	0.21	0.26	0.23	0.20

Effects of the number of real samples

Qualitative results



Limitations and Future Work

- No hard constraints for manufacturability
- No explicit treatment of stitch scale

nitations

Lin

work

Futi

- Dataset only uses single type of yarn acrylic Tamm 2/30 (no fuzzier yarn type, various plies, lace types, etc.)
- Integrate differentiable renderer during training Trade-off between quality and regularity for the synthetic data during training
- Applying to yarn patterns on 3D garments

More on

deepknitting.csail.mit.edu

Results

00									
75	86.36		88.02		90.01		91.57		
50		49.72		56.31		65.91		71.37	
25									
0 —	200 sampl	es (12.5%)	400 samp	les (25%)	800 samp	oles (50%)	All sample	es (100%)	

Full Accuracy (%) Foreground Accuracy (%)