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Industrial Knitting



Example:
Sweater
[Ministry of Supply]

http://www.youtube.com/watch?v=IvVyFHCkV3o


Example: 
Scarf
[Kniterate]

http://www.youtube.com/watch?v=uPyIfzfL7Ys&t=50


Industrial Knitting ● Whole garments from scratch



Industrial Knitting ● Control of individual needles
● Whole garments from scratch



Knitted Garment 
& Patterns

Many garments are knitted:

• Beanies, scarves

• Gloves, socks and underwear

• Sweaters, sweatpants

Current machines can create those 
garments seamlessly (no sewing 
needed).



Knitted Garment 
& Patterns

Those garments have various types 
of surface patterns (knitting 
patterns).

These can be fully controlled by 
industrial knitting machine.

= User customization!



Machine Knitting 
Programming

Low-level machine code 
requires skilled experts

= Knitting masters



Scenario

1. User takes picture of 
knitting pattern



Scenario

1. User takes picture of 
knitting pattern

2. System creates 
knitting instructions
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Scenario

1. User takes picture of 
knitting pattern

2. System creates 
knitting instructions

3. User reuses pattern 
for new garment

Machine
Knitting



Machine Knitting
Brief background



Machine Knitting Terminology

Illustration from [Underwood09]



Machine Knitting Terminology

Illustration from [Underwood09]

Regular stitch 
connectivity



Machine Knitting Terminology

V-bed machine & knitting bed



Machine Knitting Terminology
Yarn carrier

Back needle bed

Front needle bed

Individual needles

Yarn

Illustration from [Narayanan18]



Machine Knitting Operations

“Tuck”

operation

Illustration

from [Narayanan18]



Machine Knitting Operations

“Knit”

operation

Illustration

from [Narayanan18]



Machine Knitting Operations

“Transfer” operation

Illustration from [Narayanan18]



Machine Knitting Operations

Racking = offsetting between the two beds

Racking = 0 Racking ~ 6



The Data & its Acquisition
For 2D machine knitting programs



2D Knitting Pattern Programs

Image of 20x20 pattern

| Needles →

| 
Ti

m
e 

→
“Pixels” are per-needle
instructions over time

20x20 pattern program



Domain Specific Language (DSL) for regular knitting patterns

Knitting Pattern DSL

Basic operations Cross operations

Stack
OrderMove operations



Domain Specific Language (DSL) for regular knitting patterns

Knitting Pattern DSL

Cross operations

Basic operations

Stack
OrderMove operations

Knit + … 



DSL: from regular grids to sequences

Full rows of operations are executed at once with the following sequence:

1. Move “current stitches” to the operation side (front | back)

2. Apply “needle operation” (knit | tuck | miss)

3. Transfer moving stitches to back bed (cross | move | stack)

4. Apply sequence of moves depending on the operations (cross | move)

5. Bring back all stitches to front bed (purl | cross | move | stack)



DSL: from regular grids to sequences

Full rows of operations are executed at once with the following sequence:

1. Move “current stitches” to the operation side (front | back)

2. Apply “needle operation” (knit | tuck | miss)

3. Transfer moving stitches to back bed (cross | move | stack)

4. Apply sequence of operation-related moves (cross | move)

5. Bring back all stitches to front bed (purl | cross | move | stack)

Encoded by operation type:
● Move = relative order not important
● Cross = relative order defined by 

group and “order” (upper | lower)



Dataset: Initial Attempt

Individual 20x20 patterns

High-quality registration

● From color frame
● Still not per-stitch… 

Total: ~200 patterns

Time: ~1 month (intern)

= not enough data!



Dataset: Better Attempt

Capture setup with steel rods to normalize tension



Dataset Content

● Paired instructions with real (2,088) and synthetic (14,440) images.

● Synthetic data from automatic screen capture of KnitPaint (Shima’s software)



Machine Learning Details
Using two different types of supervision data



Learning Problem

Mapping images to discrete 
instruction maps

= CE loss minimization

Using two domains of data 
(one real, one synthetic)

= How to best combine both



Generalization Bound with Two Domains

Generalization gap

 

Ideal min.



Generalization Bound with Two Domains

Generalization gap

 

Empirical min.

Ideal min.



Generalization Bound with Two Domains
 



Generalization Bound with Two Domains

Hyper-parameter dependent term

 



Generalization Bound with Two Domains

Ideal error of the combined losses

 



Generalization Bound with Two Domains

Discrepancy between distributions

 



Data distributions

• Two different distribution types

Real data Synthetic 
data



• Two different distribution types

Data distributions

Real data Synthetic 
data



• S+U Learning 
[Shrivastava’17]

From synthetic to real

 

Real data Synthetic 
data



• S+U Learning 
[Shrivastava’17]

From synthetic to real

Real-looking data Synthetic 
data

 



From synthetic to real

• One-to-many mapping!  



From synthetic to real

• One-to-many!

?
?

?
Color

Tension Yarn

 

Lighting



From real to synthetic

• Many-to-one! 

Regular / Normalized

 

Color
Tension YarnLighting



Network composition



Results
Qualitative and quantitative evaluation



Pacific Ballroom #137, http://deepknitting.csail.mit.edu
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Pacific Ballroom #137, http://deepknitting.csail.mit.edu
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Architecture variations



Baseline, comparisons and impact of mixing



Baseline, comparisons and impact of mixing



Baseline, comparisons and impact of mixing



Baseline, comparisons and impact of mixing



How much data is enough data?



Limitations
And potential solutions



Issue of scale, stretch and orientation

We assume a specific scale, stretch (of 20x20 stitches) and a bottom-up 
orientation of stitch courses.

Options:

○ Explicit model scale, stretch and orientation
= makes training more complicated

○ Separate selection (using measure of “confidence”)
= take large-scale image, and try space of scales / stretches / rot.



Attempt at scale selection (successful)

Crop scale [px]



Input variety

We only used Tamm 2/30 acrylic yarn.

How do we scale to more data, and more varieties of it?

Options:

○ Simulation: need fast simulation of yarn (hard, or slow), hopefully 
as a differentiable renderer (within the network)

○ Online yarn images: unsupervised way? Cycle-consistency? 
Additional side/weaker/stronger task?



Modeling Hard Constraints

Currently, output may have invalid instruction combinations.

Tried to use penalty on valid 1st order neighborhood, but little impact.

Questions:

○ How do we model hard constraints with a neural network?

○ Split translation into instruction “potentials” and then select the 
actual instructions (e.g., using known knittability constraints)?

○ Can we infer the syntax constraints automatically?
- Note: non-trivial to specify beyond first-order neighborhood unless 

enough data is available… 



Result Details
The great, the good, the not so good, and the ugly



Details: Perfect cases
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Details: Minor errors (no semantic issue)
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Details: Larger errors (but knittable)

Initial program Initial sample Inferred program Final sample



Details: Larger errors (but knittable)

Initial program Initial sample Inferred program Final sample



Details: (few) catastrophic failures (only 2)

Not 
knittable! 

/!\

Yarn 
collapses!



Past and Future Work
Where it came from, and where it is going



Past: Foundry - Multi-Material 3D Printing



Recent: Knitting Skeletons - CAD for Knitting



Now: Knit Sketching - Sketches within CAD

Work with sketches

● Wale flow
● Connectivity
● Stitch density
● Layers (sketches)
● Layers (patterns)

Generate data for
the CAD system.

(with some efficient
parameterization)



Next: InverseKnit++

Use sketch input capability to learn to map full knitted “shapes” directly into 
low-level knitting programs.

● More instruction irregularities
● Issue of occlusion (two-sided shapes)
● Ambiguity between shape and patterns



http://deepknitting.csail.mit.edu

Thank you for listening!



Dataset Details
Instruction distribution and accuracies



Dataset: instruction statistics



Per-Instruction Accuracies



Architecture Details
Neural Networks and Losses



Actual Loss Function



Actual Loss Function



Refiner Network



Theorem 1
About the Generalization Gap



Definition 1: Discrepancy [Mansour 09]



Lemma 1: from Lemma 4 of [Ben-David 10]



Lemma 1: from Lemma 4 of [Ben-David 10]

Substitute ℒ𝛼= 𝛼 ℒS + (1 - 𝛼) ℒT



Lemma 1: from Lemma 4 of [Ben-David 10]

Introduce (ℒS(h*,h) - ℒS(h*,h))
and (ℒT(h*,h)-ℒT(h*,h))



Lemma 1: from Lemma 4 of [Ben-David 10]

Apply triangular inequality



Lemma 1: from Lemma 4 of [Ben-David 10]

Apply triangular inequality
AB  <= AC + BC
AB - AC <= BC



Lemma 1: from Lemma 4 of [Ben-David 10]

Definition of discrepancy
+ storing rest in 𝜆



Lemma 2: from [Ben-David 10]



Theorem 1: Generalization Gap



Proof of Theorem 1

Because 

Specific sampling:

Specific “de-sampling”:

Cost of “swapping” is at least … 


